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Abstract The interaction between an intense

shock and deformable particles is an important

phenomena in several technical applications. Typ-

ical applications involve a large number of par-

ticles and the length scales of interest are much

larger than the particle size. Therefore, it is im-

practical to resolve the details of shock-particle

interaction on the particle scale and the cou-
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pling between particles and ambient medium is

represented by the particle force and heating

models. For example, in the process of multi-

phase explosive detonation, the density of the

detonation products is substantial and thus sig-

nificant momentum and energy transfer occurs

during the initial shock-particle or detonation-

particle interaction. Since the post-detonation

pressure in condensed explosives can be signif-

icantly larger than the yield strength of mate-

rials, the particles can experience significant de-

formation and compression heating, which makes

modeling of interphase coupling challenging. In

this paper, scaling analysis and direct numerical

simulations (DNS) are conducted to investigate

the interaction between an intense shock and a

deformable particle. A simple physics-based in-

terphase coupling model is proposed that takes

into account the essential effects of particle de-

formation and unsteady mechanisms on momen-

tum and energy transfer. The model prediction

is compared against DNS results, and reason-

able agreement is observed.

Keywords Shock wave · Multiphase flows ·
Interphase coupling · Condensed matter
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1 Introduction

Adding reactive metal particles into condensed

phase explosive has become a common approach

to increase the total energy release of an explo-

sive system [9, 43, 44]. When a detonation wave

propagates through explosive reactants, chem-

ical reactions occur. Explosives turn into high-

pressure and high-temperature gaseous products,

which expand outward rapidly. Metal particles

gain significant velocity and their temperature

rises due to interaction with the detonation wave.

The detonation-particle interaction can also melt

and ignite the metal particles. As the reaction

rate of metals is slower than the explosive, the

embedded metal particles are dispersed due to

the initial detonation and they will continue to

burn and release energy. The energy from post-

detonation burning of particles can significantly

enhance the sustained impulse delivered by the

blast wave. This enhancement effect of metal

particles has been observed in experiments and

also practical applications [43]. It is clear that

the interaction between the detonation wave and

the metal particles plays an important role in

the overall process [33, 45]. This interaction de-

termines the initial velocity and temperature

of the metal particles. The breakage and frag-

mentation of the particles are closely related to

the peak force exerted on the particles during

detonation-particle interaction (DPI). Similarly,

ignition of the particles depends on the peak

heating. Even otherwise, the initial momentum

and energy transferred to the particles have a

strong influence on their later time evolution

[15]. If the detonation-particle interaction pro-

cess is not accurately captured, we will not be

able to predict the long time evolution or the

enhanced effects of metal particles.

A detonation wave can be considered as a

very strong shock wave accompanied with chem-

ical reactions. Understanding of particle interac-

tion with a strong shock wave is thus a good ap-

proximation. Experimental study for particle in-

teraction with a shock wave is challenging. Nev-

ertheless, some previous experiments for solid

particles interacting with a shock wave in gas

flows have been reported recently [36, 37, 46]. In

most of the previous works for shock-particle in-

teraction, the shock strength is weak compared

with the material strength of particle. There-

fore, the particle can be considered as rigid and

complex physics such as compression heating

can be neglected. Here we are interested in the

problem of a strong shock interacting with a

particle, where the shock strength is of suffi-

cient magnitude that the deformation and the

compression of the particle cannot be ignored.

In particular, we are interested in the problem

of detonation-particle interaction in the context

of condensed explosive detonations, where the

density of the products of detonation is sub-

stantial and the post-shock pressure can be sig-

nificantly larger than the yield strength of par-

ticle. Experiments of shock interaction with de-

formable particles (SIDP) in the context of metal

particles subjected to an intense shock in a con-

densed matter ambience are limited in the lit-

erature, due to the complex nature of such ex-

periments [9, 10, 44].

At the enhanced post-shock pressure of a

detonation process both the particle and the

embedding condensed matter behave like com-

pressible fluids and simulations of a strong shock

interacting with a particle can be performed us-

ing Euler equations for both the particle and the
ambient medium [33, 45]. The key to perform-

ing such SIDP simulations is rigorous models

for material properties of the particle and the

ambient medium. Properties of the condensed

matter, such as Hugoniot loci, are generally pro-

vided by experiments. By employing experimen-

tal data/correlations of material properties, pre-

vious simulations by Zhang et al. [45], Ripley et

al. [34], and Ripley [33] have shown the capa-

bility to capture SIDP in condensed matter. In

the above efforts, fully resolved direct numerical

simulations (DNS) at the microscale were per-
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formed to investigate the interaction of a pla-

nar shock/detonation wave with a single or a

small number of spherical metal particles. How-

ever, in practical applications involving a very

large number of particles, it is impractical to re-

solve the deformation of particles and the flow

at particle scale. Instead, a point-particle ap-

proach (PPA) must be used [1], in which parti-

cles are modeled as point masses. As the micro-

scale details of shock interaction with the de-

formable particles are not resolved in PPA, the

momentum and energy transfer between parti-

cles and the ambient medium must be given by

proper interphase coupling models.

We note that shock interaction with a de-

formable particle (SIDP) occurs in other appli-

cations as well. For example, shock interaction

with a droplet or a bubble can lead to signifi-

cant deformation of the droplet or the bubble.

In fact a sufficiently strong shock can lead to vi-

olent breakup and fragmentation of the droplet

or bubble, [4, 25, 31]. Also, shock or blast inter-

action with deformable soft materials, such as

biological tissues, is of great recent interest [38].

The present modeling and simulation effort will

be limited to only modest particle deformation

and will not include complex scenarios such as

breakup and fragmentation.

Recently, Parmar et al. [27–30] and Ling et

al. [14–16] proposed physics-based interphase cou-

pling models for momentum and energy exchange

between particles and gas in compressible particle-

laden flows. The key feature of the models is

that unsteady force and heating contributions

are included in the overall momentum and en-

ergy coupling. The models were validated against

experimental data and fully resolved DNS re-

sults [16, 27, 28]. The models were applied to

shock-particle interaction problems in both pla-

nar and spherical configurations [14, 15]. Un-

steady contributions were observed to be sig-

nificant compared to the quasi-steady contribu-

tions for a wide range of particle density and

diameter.

The overarching goal of this paper is to ex-

tend the above models to account for the effects

of particle deformation and compression heat-

ing, so that the improved model can be used in

macroscale simulations where SIDP is involved.

We will first describe the flow field arising from

SIDP in section 2. The key parameters deter-

mining the shock refraction pattern will be dis-

cussed. Then in section 3, we analyze the over-

all interaction process through time-scale anal-

ysis. It will be shown that SIDP can be di-

vided into inviscid and viscous phases accord-

ing to the dominant mechanisms. From model-

ing perspective, the inviscid phase is more chal-

lenging. Most of the complicated physics, such

as shock reflection and refraction, particle de-

formation, and compression heating, occur dur-

ing the inviscid phase. The multiphysics hydro-

dynamic code, ALE3D, developed by Lawrence

Livermore National Laboratory is used to sim-

ulate the details of SIDP during the inviscid

phase. The simulation approach and the DNS

results will be discussed in section 4. Then we

will describe the present interphase coupling mod-

els for SIDP in section 5. Results of the mod-

els will be compared with the DNS results and

those from standard drag and heat-transfer cor-

relations in section 6. For the purpose of valida-

tion, we also apply the model to investigate par-

ticle interaction with a Chapman-Jouguet (CJ)

detonation wave, and compare the results of the

present model with the corresponding DNS re-

sults presented in [33]. Finally, we will draw con-

clusions in section 7.

2 General analysis and key parameters

When a very strong shock wave interacts with a

solid particle, and in particular when the post-

shock pressure is much higher than the material

yield strength of the particle, both the particle

and the ambient medium can be taken to behave

as inviscid compressible fluids. In such prob-

lems, Euler equations are often used to repre-
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sent both the particle and ambient medium [45].

This approach employs a very simple model, but

yet it is generic and powerful enough to be use-

ful in a wide range of problems of interest. This

approach does not place any a priori restric-

tion on the phase of the particle or the ambient

medium. In the present context of a metal par-

ticle embedded in a condensed matter and sub-

jected to an intense shock wave, the particle is a

solid, while the ambient medium can be a solid

or a liquid. In the case of a droplet subject to

a strong shock, the deformable “particle” is the

droplet and the ambient medium can be a liquid

or solid. The problem of shock-bubble interac-

tion (SBI) has also been intensely studied (see

[32]) and in this case the deformable “particle”

is the gas bubble, which again can be embed-

ded in an ambient medium of another gas or as

in the familiar case of an air bubble subjected

to a shock wave propagating through water, the

ambient medium can be a liquid. Other combi-

nations of particle and ambient phases are also

possible. For example, in the problem of shock-

induced pore collapse and ignition initiation in

a condensed phase reactive material [22], the

ambient medium is a solid and the deformable

“particle” is an air or gas pocket. Thus the terms

“particle” and “ambient medium” are used in a

broad sense, with the understanding that their

phases can be either gas, liquid or solid.

The generic feature common to all the above

problems is that a particle of finite size embed-

ded in an ambient medium of different mate-

rial, deforms, translates and heats up when sub-

jected to an intense shock propagating through

the ambient medium. Since the particle and the

ambient medium are of different materials, the

interaction of the shock wave with the parti-

cle will generate a complex flow field, including

shock-wave transmission, refraction and reflec-

tion, along with possible vorticity production

and transport. The details of this complex in-

teraction on one hand depend on the shape and

size of the particle and also on the intensity of

the shock wave. In addition, the nature of the

shock interaction with the deformable particle

will critically depend on the material properties

of both the particle and the ambient medium.

For example, in the case of shock propagation

over a gas-gas interface, due to the miscibility

of the materials, long term evolution can be in-

fluenced by interfacial turbulence and mixing.

Also, the details of shock-bubble interaction in

the gas-liquid context can be qualitatively dif-

ferent from that of a metal particle embedded

in a condensed phase reactive material (see [25]

and [45]). In this work our primary attention is

to the later scenario. Furthermore, we will re-

strict attention to only small spherical particles

of diameter a few microns to few millimeters.

2.1 Shock impedance ratio

There are two key parameters that determine

the overall qualitative features of SIDP. They

are the shock impedance ratio Zp1/Z
a
1 and the

shock speed ratio upst/u
a
si. Here the superscripts

p and a correspond to the particle and the am-

bient medium, respectively. The subscripts si

and st represent the incident and transmitted

shocks, and thus uasi and upst denote the prop-

agation velocities of the incident shock travel-

ing in the ambient medium and the transmit-

ted shock traveling in the particle, respectively.

When a shock wave interacts with an interface

separating different materials, the transmitted

wave remains a shock wave, while the reflected

wave can be a shock wave or an expansion fan.

The reflected wave pattern is determined by the

shock impedance across the interface. The shock

impedance ratio for an interface of two ideal

gases can be expressed as (see [11])

Zp1
Za1

=
ρp1c

p
1

ρa1c
a
1


1

2γp

[
(γp + 1)

pp2
pp1

+ (γp − 1)

]
1

2γa

[
(γa + 1)

pa2
pa1

+ (γa − 1)

]


1/2

,

(1)
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where (ρp1, c
p
1, γ

p) and (ρa1 , c
a
1 , γ

a) denote the pre-

shock density, speed of sound, and specific heat

ratio of the particle and ambient medium, re-

spectively. The pressure behind the incident shock

traveling in the ambient medium is represented

by pa2 ; while the pressure behind the transmit-

ted shock traveling in the particle is represented

by pp2. The pre-shock pressure for the particle,

pp1, is taken to be the same as that in the ambi-

ent medium, pa1 . The pre-shock and post-shock

states are indicated by subscripts 1 and 2, re-

spectively. When the impedance ratio Zp/Za <

1, the reflected wave is an expansion fan; when

Zp/Za > 1, the reflected wave is a shock wave.

This simple criterion applies only for the case

of a planar shock impinging normally on a pla-

nar material interface. In case of oblique in-

teraction or curved shocks and material inter-

faces, additional complexities arise. For the case

of a spherical particle, the material interface is

clearly non-planar. Nevertheless, the simple cri-

terion based on shock impedance ratio applies

near the front of the particle and dictates the

character of the initial reflected wave pattern

near the front of the particle.

Unfortunately, shock impedance and the ra-

tio in Eq. (1) depend not only on the material

properties on either side of the interface, but

also on the shock strength, parameterized by the

pressure jump across the shock. In the limit of

a weak incident shock pa2/p
a
1 → 1, the resulting

transmitted shock will also be weak pp2/p
p
1 → 1

and the shock impedance ratio can be approxi-
mated by the acoustic impedance ratio

Zp1
Za1

∣∣∣∣
pa2/p

a
1→1

=
ρp1c

p
1

ρa1c
a
1

. (2)

In both Eqs. (1) and (2) the material properties

are to be taken under undisturbed conditions

before the arrival of the shock wave. Thus, the

advantage of the above acoustic limit is that it

depends only on the thermodynamic properties

of the particle and the ambient medium. As a

result, the nature of the reflected wave in shock

interface interaction is often estimated based on

the acoustic impedance ratio, instead of the true

shock impedance ratio. However, it should be

noted that this simplification under certain con-

ditions can lead to erroneous estimation.

A more appropriate condition for the present

consideration is when the incident shock strength

is very large and therefore we consider the limit

pa2/p
a
1 � 1. Correspondingly the transmitted

shock is also very strong and we can set pp2/p
p
1 �

1. Under this condition the shock impedance ra-

tio can be expressed as

Zp1
Za1

∣∣∣∣
pa2/p

a
1→∞

=
ρp1c

p
1

ρa1c
a
1

[
γa(γp + 1)pp2/p

p
1

γp(γa + 1)pa2/p
a
1

]1/2
.

(3)

Although, the shock impedance ratio still de-

pends on pa2/p
a
1 and pp2/p

p
1, the demarcation be-

tween reflected shock and reflected expansion

wave requires only the condition (Zp1/Z
a
1 )pa2/pa1→∞ =

1. In this limit of matching impedance, we also

have the transmitted shock being equal to the

incident shock and as a result pp2/p
p
1 = pa2/p

a
1 .

Thus, in the limit of a very strong incident shock,

the reflected wave pattern, i.e., a shock wave or

an expansion fan, can be estimated, without the

precise knowledge of the actual shock strength,

in terms of the following simple condition

ρp1c
p
1

ρa1c
a
1

[
γa(γp + 1)

γp(γa + 1)

]1/2
≷ 1 . (4)

Here again the criterion depends only on the

material properties of the particle and the am-

bient medium.

2.2 Shock speed ratio

The second parameter of relevance is the ratio

of the speed of the transmitted shock to that

of the incident shock. When the materials on

both sides of the interface can be represented as

ideal gases, and in the case of a normal shock
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propagating through a planar interface, the ra-

tio of transmitted to incident shock speed can

be written as

upst
uasi

=
cp1
ca1

1 +
γp + 1

2γp
(
pp2
pp1
− 1)

1 +
γa + 1

2γa
(
pa2
pa1
− 1)


1/2

, (5)

The shape of the transmitted shock in a spher-

ical particle can be determined by this shock

speed ratio. When upst/u
a
si > 1, the incident

shock far away from the particle is moving slower

than the transmitted shock passing through the

particle. As a result, shock refraction is diver-

gent, and the transmitted shock has convex cur-

vature, see Fig. 1(b). If upst/u
a
si < 1, the trans-

mitted shock propagates slower than the inci-

dent shock, then the shock refraction is conver-

gent, and the transmitted shock has a concave

curvature, see Fig. 1(a).

In the acoustic limit of weak incident and

transmitted shocks, their propagation speeds are

just the speed of sound in the respective medium.

Thus, in this limit the sound speed ratio be-

ing greater than or less than one determines

the shapes of the transmitted and the refracted

shocks. Of more relevance here is the limit of

very strong incident and transmitted shocks (i.e.,

pa2/p1 � 1 and pa2/p1 � 1). In this limit, as dis-

cussed above for the impedance ratio, the cri-

terion for estimating the structure of the trans-

mitted shock, i.e., to be convex or concave, and

the refraction pattern of the shock within the

particle, i.e., to be divergent or convergent, is

given by

cp1
ca1

[
γa(γp + 1)

γp(γa + 1)

]1/2
≷ 1 . (6)

2.3 Gas systems vs condensed-matter systems

The shock interaction behavior in gas-gas sys-

tems and those of condensed matter systems dif-

fer and the difference can be related in terms of

Deformed
interface

Deformed
interface

Reflected
shock wave

Original
interface

Transmitted shock

expansion wave

Original
interface

Reflected

Transmitted shock

Incident shock

Unshocked region

Z  /Z  < 11(a) 1

ap

1 1
p a

Incident shock

Unshocked region

(b) Z  /Z  > 1

Fig. 1 Representative schematic of shock-particle inter-

action flow field.

differences in their shock impedance and shock

speed ratios. For gases obeying ideal gas law, in

general, if the particle is denser (lighter) than

the ambient medium, then the corresponding

speed of the transmitted wave within the par-

ticle is slower (faster) than the incident wave

speed in the ambient medium. Also, the impedance

of the particle in general will be larger (smaller)

than that of the ambient medium. Thus, in a

shock-bubble interaction problem, if the gas bub-

ble is denser (lighter) than the surrounding gas

then the reflected shock in general can be ex-

pected to be a shock (expansion fan) and the re-
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fracted shock pattern around the particle will be

convergent (divergent) [32]. In condensed mat-

ter the general behavior is often reversed. The

acoustic speed in a denser particle is often faster

and correspondingly the impedance is larger.

However, the above generalizations are based on

acoustic limit and assume specific heat ratios to

be nearly invariant. Thus, even in cases involv-

ing real gases one must accurately compute the

shock impedance and shock speed ratios to es-

timate the reflected and the refracted wave be-

haviors. In case of condensed matter systems,

we can still take the shock impedance and shock

speed ratios to accurately predict the shock-

particle interaction behavior. However, the be-

havior of condensed matter may depart from the

ideal gas law and thus the relations presented

above for impedance and shock speed ratios will

not be strictly applicable.

2.4 Particle deformation

Another important feature of shock interaction

with a deformable particle is vorticity produc-

tion and its influence on interface deformation.

In shock-particle interaction, vorticity is gener-

ated due to baroclinic mechanism arising from

misalignment of the pressure and the density

gradients. Initially, since the flow ahead of the

shock wave is stagnant and the shock wave is

planar, vorticity is zero everywhere. During the

short duration of initial shock-particle interac-

tion viscous effects are negligible and baroclin-

icity is the primary source for vorticity produc-

tion [32]. The direction of rotation of vorticity

is determined by the orientation of the density

gradient at the interface. In Figs. 1 (a) and (b),

the rotation is counter-clockwise and clockwise

in the upper half plane, respectively. Vorticity

generation is related to interface deformation

during the interaction and its final shape after

the passage of shock wave.

The degree of deformation the particle un-

dergoes when subjected to a shock depends on

both the shock impedance ratio Zp1/Z
a
1 and the

shock strength. When shock impedance is nearly

matched Zp1/Z
a
1 ≈ 1 or when the shock is weak,

deformation will be small. Under such condi-

tion, for example, a spherical particle may be

only slightly compressed along the shock propa-

gation direction and may end up oblate spheroidal

in shape. If Zp1/Z
a
1 � 1 or � 1 or if the shock

is strong, then the particle may undergo signifi-

cant deformation. The particle interface can roll

up and the particle can tear apart. The forces

exerted on a particle dictate its deformation,

which in turn influences the overall force ex-

erted on the particle. Therefore, the effect of

particle deformation needs to be considered in

force modeling. Here we are concerned with the

regime where the particle undergoes substan-

tial deformation, but it maintains integrity and

thereby we will not address issues such as frac-

ture and fragmentation.

3 Time scale analysis

3.1 Overall interaction process

Before we investigate the important time scales

of the problem we first examine the sequence of

key events that follows shock interaction with

a deformable particle. When a spherical par-

ticle interacts with a planar shock wave with

constant post-shock properties, the overall pro-

cess can be represented by Fig. 2. The incident
shock wave travels from left to right with con-

stant speed uasi and encounters an initially sta-

tionary particle. As a result of this interaction

the particle is rapidly accelerated forward, its

temperature increases due to heating, and the

particle undergoes deformation. The schematic

in Fig. 2 is drawn in a frame attached to the

shock and in this frame of reference the par-

ticle moves from right to left. Before the ar-

rival of the shock wave, the particle is station-

ary and in thermal equilibrium with the ambi-

ent medium (state (a)), i.e., up = 0 and T p =
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(b)(c)(d)(e) (a)

x

y

usi

pp > pa
2

T p > T a
2

up > 0

pp = pa
1

T p = T a
1

pa
1 , T a

1

pp �= pa
2

T p �= T a
2

up �= ua
2

pp = pa
2

T p �= T a
2

up �= ua
2

pp = pa
2

T p = T a
2

up = ua
2

pa
2 , T a

2 , ua
2

Fig. 2 Schematic of shock wave interaction with a
spherical particle.

T a1 . When the shock wave reaches the parti-

cle, complex interaction described in Fig. 1 oc-

curs (state (b)). The portion of particle swept

through by the transmitted shock is acceler-

ated and heated, i.e., up > 0, T p > T a1 and

pp > pa1 . At state (c), the transmitted shock has

completely passed through the particle, but re-

flected waves generated at the interface due to

their impedance mismatch, continue to travel

back and forth inside the particle. As a result,

the velocity, temperature, and pressure inside

the particle are non-uniform and different from

those of the ambient medium behind the inci-

dent shock. As time evolves, with each internal

reflection within the particle the flow field in-

side the particle becomes weaker and weaker,

and the pressure within the particle first equili-

brates to the post-shock ambient pressure, i.e.,

pp = pa2 . During this initial stage, the dominant

mechanism of particle evolution is inviscid, and

the viscous and diffusive effects are negligibly

small.

We denote this intermediate equilibrium state

as the inviscid quasi-equilibrium state and is

schematically represented by state (d) in Fig.

2. At this stage the velocity inside the particle

is nearly uniform, but the particle velocity in

general will differ from the post-shock ambient

velocity. Similarly, the particle, although heated

by shock-induced compression, will not be the

same as the post-shock ambient temperature.

This intermediate inviscid equilibrium state is

denoted with subscript 3 in the velocity and

temperature evolution plots presented in Fig. 3.

It should be noted that temperature may still be

non-uniform inside the particle at this stage. As

Fig. 3 Schematic of time evolutions of particle average
(a) velocity and (b) temperature in the interaction with

a shock wave.

time continues to evolve, viscous and diffusion

mechanisms become important, which eventu-

ally bring the particle velocity and temperature

to be in equilibrium with the post-shock ambi-

ent medium, i.e., up = ua2 and T p = T a2 . The fi-

nal state represents the viscous equilibrium state

and is denoted as (e) in Fig. 2. Since we consider

situations in which post-shock pressure exceed

the elastic limit of particle material, the defor-

mation of the particle is irreversible.
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3.2 Time scales in SIDP

In the process of shock-particle interaction, there

are multiple time scales that dictate the overall

time evolution of particle velocity and tempera-

ture. A schematic of the time evolution of mean

particle velocity and temperature is shown in

Fig. 3. Different states shown in Fig. 2 are also

indicated in Fig. 3. The first is the duration

of shock passage through the particle. This is

the time it takes from the instance the incident

shock contacts the particle to when the trans-

mitted shock completely passes out of the par-

ticle. This time scale is defined as the shock-

particle interaction time,

τps =
dp

uasi
. (7)

where dp is the particle diameter. Strictly speak-

ing, the transmitted shock speed upst instead of

the incident shock speed usi should be used to

calculate τps . But since ust varies with particle

material, we use usi here for simplicity. Because

ust and usi are of the same order of magnitude,

usi is sufficient to estimate the particle-shock

interaction time scale. As can be seen from Fig.

3 during 0 < t < τps , the mean particle velocity

and temperature increase rapidly.

The second time scale is the inviscid time

scale for the particle to reach pressure equilib-

rium with ambient medium i.e., pp = pa2 , see

state (d) in Fig. 2. This time scale is denoted

as τpinv, as for t < τpinv viscous effect is negli-

gible and the flow can be considered inviscid.

When the transmitted shock reaches the inter-

face with the ambient medium, the impedance

mismatch will generate reflected waves which

will travel back into the particle. Similar wave-

interface interaction happens when the reflected

wave reaches the particle interface. During τps <

t < τpinv, these reflected waves move back and

forth inside the particle until they eventually be-

come negligibly weak. Typically by about O(10)

or so reflections, the pressure equilibrium is nearly

achieved. Therefore, it can be expected that τpinv

is a multiple of the shock-particle interaction

time scale, i.e., τpinv ≈ 10τps . A more precise esti-

mate of τpinv will depend on material properties

and shock strength. At around τpinv, the mean

particle velocity and temperature will reach their

intermediate asymptotic values, up3 and T p3 .

Only for times much longer than τpinv, the

viscous and thermal diffusion effects become im-

portant in the momentum and energy trans-

fer. On this longer time scale the viscous drag

force and the conductive/convective heat trans-

fer mechanisms will become significant to bring

the particle velocity and temperature to the post-

shock ambient values of ua2 and T a2 . The time

scale for up to reach ua2 is the particle mechani-

cal response time

τpv =
ρp(dp)2

18µa
, (8)

and that for T p to reach T a2 is the thermal re-

sponse time

τpθ =
ρpCp(dp)2

12ka
. (9)

In the above equations, µa and ka are the vis-

cosity and thermal conductivity of the ambi-

ent medium. The particle heat capacity is de-

noted by Cp. Typical values of these time scales

can be obtained by using the following sam-

ple values appropriate in the context of shock-

particle interaction in condensed material: ρp ∼
O(103 Kg/m3), µa ∼ O(10−5 Pa s), us ∼ O(103 m/s),
and dp ∼ O(1 µm). Since thermal diffusivity

k/(ρCp) is typically O(1), the thermal response

time is of the same order as the mechanical

response time. But more importantly, the me-

chanical and thermal response times are about

three to four orders of magnitude larger than τps .

Therefore, the overall shock-particle interaction

process can be divided into two phases accord-

ing to the dominant mechanism: the inviscid-

phase and the viscous-phase. The inviscid-phase

lasts from t = 0 to about τpinv, and the viscous-

phase from τpinv to when particle reaches its me-
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chanical and thermal equilibrium with the am-

bient medium.

4 DNS of inviscid-phase of SIDP

4.1 Governing equation and simulation

approach

In this section, we investigate the interaction

between a spherical particle and a non-reacting

shock wave through direct numerical simulations.

Since post-shock pressure is in excess of the yield

strength, both the particle and the ambient medium

are treated as compressible fluids. The govern-

ing equations are conservation of mass, momen-

tum, and energy, written as follows:

Dρ

Dt
= −ρ∇ · u , (10)

ρ
Du

Dt
= ∇ · σ , (11)

ρ
DE

Dt
= ∇ · (σ · u) , (12)

where ρ, u, E, and σ represent density, veloc-

ity, total energy, and stress tensor, respectively.

Symbols without superscripts represent proper-

ties corresponding to both the particle and the

ambient medium. The substantial derivative de-

noted as D/Dt is defined as

D

Dt
=

∂

∂t
+ u · ∇ . (13)

Since we only consider the inviscid-phase of SIDP,

viscous effects are ignored and thus σ reduces to

−pI.
To close the equation system (10)-(12), the

Mie-Grüneisen equation of state (EOS) is em-

ployed:

p(ρ, e) = pH(ρ) + ρΓ (e− eH(ρ)) , (14)

where e is internal energy, Γ is the Grüneisen

coefficient, and pH(ρ) and eH(ρ) are pressure

and internal energy along the Hugoniot curve,

respectively. To solve Eqs. (10)-(12), Eq. (14) is

sufficient. However, as we also want to solve for

particle temperature, the following Mie-Grüneisen

thermal equation of state is also needed:

T (ρ, e) = TH(ρ) +
e− eH(ρ)

Cv
, (15)

where Cv is specific heat at constant volume,

which is considered as constant here. The Hugo-

niot curve is approximated by the linear us−u2
relation:

us = c1 + su2 , (16)

where us, c1, and u2 are the shock speed, pre-

shock speed of sound, and post-shock velocity.

The coefficient s is determined by shock-compression

experimental data. Based on Eq. (16), the ex-

pressions of pH(ρ) and eH(ρ) can be derived

from conservation laws. For TH(ρ), the method

of [41] is used, in which Cv and (∂p/∂T )v are

considered as constants.

The evolution equations for conservation of

mass, momentum, and energy, Eqs. (10)-(12),

are solved in an Eulerian framework on a struc-

tured mesh. Axisymmetry was used to optimize

computational resources. The multiphysics code,

ALE3D [24], was used to perform these simula-

tions. The mathematical formulation is based

on an operator-split method and invokes an ar-

bitrary Lagrangian-Eulerian (ALE) approach in

the 2-D axisymmetric configuration.

The capabilities available in ALE3D allow

solving the evolution equations either in a pure
Lagrangian, pure Eulerian, or in an ALE man-

ner. Within an Eulerian or ALE construct, a

remap formalism is invoked, allowing the advec-

tion of the conserved variables on the moving

mesh. In order to simulate hydrodynamic flow

across shock waves, it is necessary to add some

form of numerical dissipation to the conserva-

tion equations, such as the artificial viscosity

technique by von Neumann and Richtmyer [40].

The governing equations are discretized us-

ing a finite-element method and are solved in

a weak form. To control numerical instabilities
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due to the finite-element formulation, hour-glass

mode control is invoked. The spatial discretiza-

tion is of hybrid form where the node coordi-

nates and velocities are node-centered variables;

while the density, pressure, internal energy, tem-

perature are cell-centered quantities. The ba-

sis function consists of bi-linear and piecewise

constant for the velocities and pressure, respec-

tively. The time integration approach follows

a staggered explicit formulation, where the ve-

locity fields are computed in a staggered man-

ner from the zonal state variables. Thus, the

Lagrangian coordinates, accelerations, pressure,

energy, and mass are centered in time at tn;

while the velocities, are centered in time at tn−1/2.

4.2 Simulation results

A schematic of the computational domain is shown

in Fig. 4. The flow is taken to be axisymmet-

ric about y = 0 axis. The computational do-

main extends in the x-direction from x/dp=-10

to x/dp=+50 where the particle center is lo-

cated at (0,0); while in the y-direction, the do-

main length is +50dp. An inflow boundary con-

dition is imposed on the left boundary; while

non-reflective outflow condition on the right bound-

ary. On the top boundary, the y-velocity and

the gradient of x-velocity are taken to be zero.

The grid size is uniform in the x-direction and

∆x/dp is set to be 0.01. In y-direction, a uni-

form mesh is invoked in the particle vicinity, i.e.,

∆y/dp = 0.01 for 0 ≤ y/dp ≤ 8, then the mesh

is smoothly stretched toward the top bound-

ary. The total mesh consists of 1.5M cells. A

mesh resolution study has been performed and

it showed that the present grid size minimizes

computational resources while being mesh-independent.

The time step size is computed based on a CFL

condition of 0.5.

In the simulations, the ambient and the par-

ticle materials are take to be nitromethane and

aluminum, respectively. The particle is initially

stationary and located at x = 0. A non-reacting

Fig. 4 Schematic of DNS computational domain.

NM Al

ρ1[Kg/m3] 982 2785

T1[K] 298 298

c1[m/s] 1647 5350

s 1.637 1.350

Cv[J/(Kg K)] 920.5 1733

Table 1 Properties of nitromethane (NM) and alu-

minum (Al).

Case 1 Case 2

usi[m/s] 2900 4800

ua2 [m/s] 1000 2270

pa2 [GPa] 2.84 10.7

ρa2 [Kg/m3] 1507 1861

T a2 [K] 585 1745

aa2 [m/s] 3200 5730

Table 2 Summary of shock conditions for DNS cases.

shock wave propagates from left to right, which

first contacts the particle at t = 0. The pre-

shock properties and Hugoniot properties of both

nitromethane and aluminum are listed in Ta-

ble 1. Two cases with different shock strengths

are considered here. The shock speed and post-

shock conditions are listed in Table 2

4.2.1 Flow field arising from SIDP

The density contour at t/τs = 8.7 for Case 1 is

shown in Fig. 5. At this time, the shock wave

has passed through the particle. We observed
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Fig. 5 Density contour at t/τs = 8.7 showing the final

shape of the aluminum particle after the shock passage

for Case 1.

that the aluminum particle has reached the in-

viscid quasi-steady equilibrium state (State (d)

in Fig. 2). The aluminum particle and the ambi-

ent nitromethane have reached pressure equilib-

rium. The velocity and temperature of the alu-

minum particle reach constant values, but they

are different from those of the ambient medium:
up/ua = 0.58 and (T p − T a1 )/(T a2 − T a1 ) = 0.15.

This indicates that the aluminum particle has

gained significant momentum and energy from

the inviscid interaction with the shock wave.

The final shape of the aluminum particle can

also be seen in Fig. 5. Due to the interaction

with the shock wave, the particle is compressed

along the streamwise direction, changing from a

sphere to an oblate-spheroid-like shape.

The time evolutions of the pressure and tem-

perature contours for Case 2 are shown in Figs.

6 and 7. The shock refraction pattern is seen to

be consistent with the schematic in Fig. 1 (b),

as the shock impedance of aluminum is larger

than nitromethane. The transmitted shock in

the aluminum particle propagates faster than

the incident shock in the ambient nitromethane,

resulting in a convex shock shape. When the

transmitted shock wave reaches the downstream

edge of the particle, another shock refraction

occurs. According to the analysis in section 2,

the shock refraction will generate a transmitted

shock and a reflected expansion fan. But due

to the spherical geometry, the flow field is more

complex than 1D case. The incident shock that
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Fig. 6 Pressure evolution in SIDP for Case 2. (a) t/τs =

0.4, (b) t/τs = 1.0, (c) t/τs = 1.6, (d) t/τs = 2.2, and
(e) t/τs = 2.8.

diffract over the particle is seen to overtake the

transmitted shock and the two shocks eventu-

ally merge together. It can be seen that at about

t/τs = 2.8, the shape of the main shock wave

returns back to nearly planar. The reflected ex-

pansion waves propagates upstream back into

the particle and interact with the particle inter-

face again. These subsequent interactions and

the generated waves are seen to be quite com-

plex, but the waves decay fast.

Similar to Case 1, the particle is compressed

in the streamwise direction for Case 2. However,

due to the higher shock strength in Case 2, the

particle compression is stronger and results in

a sharp edge which was not seen in Case 1. It

is observed that this sharp edge induces flow

separation downstream of it at later times, see

Figs. 6 (d) and (e). The flow separation seems
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Fig. 7 Temperature evolution in SIDP for case 2. (a)

t/τs = 0.4, (b) t/τs = 1.0, (c) t/τs = 1.6, (d) t/τs = 2.2,
and (e) t/τs = 2.8.

to contribute to the continuous deformation of

the particle after the shock passage.

From Fig. 7, it can be seen that the temper-

ature inside the aluminum particle increases sig-

nificantly due to the interaction with the shock

wave. As the transmitted shock passes through

the particle, e.g., at t/τs = 0.4, the post-shock

temperature of aluminum particle reaches about

580K. Though the post-shock temperature of

the particle is still lower than in the ambient

nitromethane, compared to the initial tempera-

ture, the aluminum particle is significantly heated.

After the passage of the initial shock wave, the

subsequent wave interactions continue to change

the temperature of the particle. Due to the com-

plexity of the subsequent wave interactions, the

temperature field inside the particle is non-uniform.

4.2.2 Evolutions of Lagrangian tracers within

the particle

In order to closely investigate the complex flow

field, we trace five material points that are ini-

tially located within the aluminum particle and

follow their positions and local thermodynamic

properties in the Lagrangian framework. The

initial positions of these tracers are indicated

in Fig. 4. The time evolutions of pressure and

temperature of these five tracers for case 1 are

shown in Fig. 8.

The general trends of pressure evolutions for

the different tracers are quite similar. The pres-

sure of each tracer increases rapidly when the

transmitted shock reaches the tracer. After that

the tracer pressure drops and rises multiple times

until it approaches the asymptotic value pa2 . It

can be seen that at about t = 4τs all tracers

almost reach pa2 .

We observe that the tracer pressure decreases

following the passage of the transmitted shock.

This is different from the one-dimensional ana-

logue of shock-particle interaction, i.e., when a

planar shock wave interacts with a planar ma-

terial interface as shown in Fig. 9. Here, the

post-transmitted-shock pressure within the par-

ticle will remain constant until the transmitted

shock reaches the right-edge of the 1D parti-

cle. More details on a planar shock interacting

with an 1D particle can be found in [33]. In

the spherical-particle case, post-incident-shock

pressure of nitromethane on the lateral side of

particle is smaller than the post-transmitted-

shock pressure inside the aluminum particle. The

lateral pressure gradient causes the the shocked

portion of particle to expand in the y-direction

normal to the direction of shock propagation. It

is also interesting to note that this lateral ex-

pansion of the shocked portion of the particle is

roughly isothermal, see Fig. 8(b).

For tracers 3 to 5, which are initially located

along the y axis, it can be seen that the post-

transmitted-shock pressure is quite close. But
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Fig. 8 Time evolutions of pressure and temperature of

the five tracers inside the particle for case 1.

for tracers 1 to 3, which initially located along

the x axis, the post-transmitted-shock pressure

decays significantly from tracer 1 to 3, indicat-

ing that the strength of the transmitted shock

decreases when it propagates inside the parti-

cle. It should again be reminded that in the 1D

analogue shown in Fig. 9, the transmitted shock

x

t

Incident 
shock

Transmitted 
shock

Reflected 
shock

Second
transmitted 

shock

Reflected 
expansion

fan
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p

Tracer
trajectory
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Mean pressure

Tracer pressure

(a) x-t diagram

(b) Pressure evolution

Fig. 9 Schematic of (a) x-t diagram for a nitromethane

non-reacting shock wave interacting with a 1D alu-
minum particle and (b) time evolution of pressure inside

the particle.

speed is constant until it reaches the right-edge

of the particle. In the spherical-particle case, the

post-transmitted-shock pressure decreases due

to lateral expansion, and as a result the trans-

mitted shock slows down. Furthermore, though
different tracers reach the same asymptotic pres-

sure, their asymptotic temperatures on the in-

viscid time scale are different. This is due to

the fact that their final pressure was reached

through different pressure evolution. In the present

case, the difference is around 20% of (T p3 −T a1 ).

Figure 10 shows variations of tracer density

and temperature as functions of tracer pressure.

The Hugoniot curve of aluminum corresponding

to the initial state (pp1, T
p
1 , ρ

p
1) is also plotted.

First, it can be observed that ρp and T p of all
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Fig. 10 Evolutions of density and temperature of the

five tracers in p− ρ and p− T diagrams for case 1.

tracers move up along the Hugoniot curve when

the transmitted shock wave passes over it. But

since the post-transmitted-shock pressure varies

between the different tracer, they end up at dif-

ferent points on the Hugoniot curve. When the

tracer pressure decreases, ρp decreases along a

slightly different path. But in general the ex-

pansion path on the ρp − pp diagram is pretty

close to the Hugoniot curve. Similarly, during

the subsequent compression and expansion pro-

cesses, as the waves internally reflect within the

particle, the variation of density along the local

pressure stays very close to the Hugoniot curve.

As a result, when pressure at the different trac-

ers eventually reach pa2 , density values at the

different tracers are close. Therefore, the value

of ρp on the Hugoniot curve corresponding to

pa2 , denoted as ρpH(pa2), is a good approximation

for particle density at the end of inviscid-phase

of shock-particle interaction.

Similar to ρp, as the initial transmitted shock

passes over the different tracer points, T p in-

creases along Hugoniot curve. However, when

pressure decreases after the shock passage, the

expansion paths of all the tracers significantly

deviate from the Hugoniot curve. It can be seen

that T p varies little in the first expansion. After

that, tracer temperature goes up and down with

pressure. The paths of the subsequent compres-

sion and expansion processes in the T p−pp dia-

gram have slopes that are similar to that of the

Hugoniot curve corresponding to the first com-

pression. Since the post-transmitted-shock pres-

sure differs between the different tracers, the ex-

pansion and compression processes at these La-

grangian tracers are also different. As a result,

at the end of the inviscid-phase of shock-particle

interaction, though ρp and pp are nearly uni-

form inside the particle, T p is not. Therefore,

it is challenging to estimate the final average

temperature of the particle.

5 Interphase coupling model for SIDP

The results discussed in the above section clearly

demonstrate the ability to perform well resolved

simulations that capture the details of shock in-

teraction with a deformable particle. Such de-

tailed simulations can be extended to situations

involving tens of particles. But the computa-

tional cost will be severe, partly because there
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are more particles and their interactions with

the shock wave needs to be resolved, but more

importantly the assumption of axisymmetry can-

not be employed and a true three-dimensional

simulation is required. Nevertheless, in practi-

cal applications involving shock interaction with

millions of particles the only viable computa-

tional option is the point-particle approach (PPA).

In PPA, the details of shock transmission within

each particle and the details of defraction around

the particles is not faithfully followed. Only the

overall effect of particle motion, and its mo-

mentum and energy exchange with the ambient

medium is computed. Here we want to use the

DNS results of the previous section to develop

and test a physics-based point particle model

that is capable of capturing these averaged be-

haviors of the particle response accurately.

In a point-particle approach, the Lagrangian

evolution equations for a particle are given as

dxp

dt
= up,

dup

dt
= f,

dT p

dt
= q , (17)

where xp, up, and T p are the mass averaged po-

sition, velocity and temperature of the particle.

Note that the bars denote mass averaged quan-

tities over the particle. The overall force divided

by the particle mass is denoted by f . Similarly,

the overall heating divided by the particle mass

and heat capacity is denoted by q. In essence,

f and q must be modeled in terms of the in-

cident shock condition and the material prop-

erties of the particle and the ambient medium.

The resulting closures will be the corresponding

interphase coupling models for momentum and

energy transfer. It is assumed that the flow re-

mains axisymmetric even as the shock wave in-

teracts with the particle. As a result, the force

exerted on the particle is aligned with the direc-

tion of shock motion. Since we take gravity to

be unimportant compared to the strong hydro-

dynamic forces, the motion of both the particle

and the ambient medium will remain one di-

mensional at the macroscale (taken to be along

the x-coordinate). Therefore, Eq. (17) has been

written in one-dimensional form.

To model the momentum and energy trans-

fer between the particle and the ambient medium

during shock-particle interaction, we divide the

overall force and heating exerted on the parti-

cle into contributions from different physically

meaningful mechanisms. This is the approach

that has been successfully followed in the con-

text of low speed incompressible multiphase flows

[6, 18, 20] and we follow the extension of this

approach to compressible flows and in particu-

lar to the problem of shock-particle interaction

[14, 28]. Here we adapt the model of Ling et

al. [14] to the present problem of shock interac-

tion with a deformable particle.

5.1 Modeling of momentum transfer

The overall hydrodynamic force is expressed as

the sum of individual contributions,

f = fqs + fpg + fam + fvu , (18)

where fqs, fpg, fam, and fvu denote the quasi-

steady, pressure-gradient, added-mass, and viscous-

unsteady force contributions, respectively.

The quasi-steady force fqs is the force that

acts on a particle due to non-zero relative ve-

locity (ua − up), the expression of which is

fqs =
ua
s − up
τpv

CD(Rep,Mp)Rep

24
, (19)

where ua
s

is the surface-average undisturbed

ambient velocity and CD is the quasi-steady drag

coefficient.

In the traditional point-particle approach,

ua will correspond to undisturbed ambient flow

velocity at the particle location (or as seen by

the particle). In the limit of a particle much

smaller than the scale of the ambient flow, ua

can be unambiguously defined. However, in the

present context of a shock wave passing over

the particle, the length scale of the shock is
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smaller than the particle. As a result, the undis-

turbed ambient flow velocity varies over the par-

ticle when the shock is located over the parti-

cle. For such spatially varying flows, in the con-

text where compressibility is important, it has

recently been rigorously derived that the ap-

propriate representation for the ambient flow is

given by an average over the surface of the par-

ticle ua
s

=
∮
s
uads [30].

In compressible flows, CD is a function of

particle Reynolds and Mach numbers, the ex-

pression of which is given in [28]. For dense par-

ticulate flows, CD will depend on the particle

volume fraction, see e.g., [16, 35], but the effect

of finite particle volume fraction is not consid-

ered in this study. The definitions of the particle

Reynolds number Rep and Mach number Mp are

Rep =
ρa
s|up − uas|dp

µa
, (20)

and

Mp =
|up − uas|

aa
s . (21)

The pressure-gradient force fpg is the force

experienced in the absence of the particle by the

ambient medium that would occupy the volume

of the particle. Therefore, fpg depends on the

stress gradient of the local undisturbed flow (the

flow when the particle is absent). Though it is

conventionally called pressure-gradient force, it

also takes viscous stress into account. Neverthe-

less, in the context of shock-particle interaction,

the viscous stress is negligible when compared

to the pressure. As a result, fpg can be expressed

as

fpg = − 1

ρp

(
∂pa

∂x

)v
. (22)

As addressed above for the quasi-steady force,

the pressure gradient of the undisturbed ambi-

ent ∂pa/∂x varies across the shock. It has been

rigorously shown that in the evaluation of the

pressure-gradient force, a volume average is ap-

propriate as represented by (∂pa/∂x)
v

[30].

The added-mass force fam is the extra force

that is exerted on the particle in order to ac-

celerate the medium surrounding the particle,

when the relative acceleration between the par-

ticle and ambience is non-zero. This is the conse-

quence of non-penetration boundary condition

at the interface between the particle and the

ambient medium. In compressible flows, due to

finite propagation speed of acoustic waves, the

added-mass force involves a history integral (see

[17, 26]) and as a result the term “added mass”

is not strictly appropriate. In the case of a non-

deformable particle, it can be expressed as

fam =

∫ t

−∞
Kiu(t− χ,Mp)(

D

Dt

v (
ρaua

v

ρp

)
− d

dt

(
ρa
v
up

ρp

))
t=χ

dχ ,

(23)

where Kiu is the inviscid unsteady kernel. As

shown by [17] and [26] in the limit of zero Mach

number, the kernel takes a simple formKiu(ξ) =

exp(−ξ) cos(ξ). At finite Mp, Kiu cannot be de-

rived analytically, but numerical solutions were

presented by [26]. In the present context of a

strong shock interacting with a deformable par-

ticle, additional complexities arise. Discussions

on modeling added-mass force for a deformable

particle will be presented in the following sec-

tion.

At last, the viscous-unsteady force fvu, which

is often called the Basset history force, is the vis-

cous force exerted on a particle due to tempo-

ral development of the boundary layer when the

relative acceleration between the particle and

ambient medium is non-zero. The expression of

viscous-unsteady force is given as

fvu =
1

ρa
s
τpv

∫ t

−∞
Kvu(t− χ,Rep,Mp)(

D

Dt

s

(ρaua)
s − d

dt
(ρaup)

s

)
t=χ

dχ , (24)
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where the viscous-unsteady kernel is denoted by

Kvu. In incompressible flows, models of Kvu for

finite Reynolds numbers is given by [19] and

[13]. Expressions of Kvu in compressible flows in

the limit of Rep, Mp → 0 can be found in [29].

Corresponding kernel for compressible flows for

finite Rep and Mp are not fully understood. Nev-

ertheless, the primary focus here is the initial

inviscid-phase and thus viscous steady force is

of secondary importance.

A detailed discussion about using surface or

volume averaged quantities in a non-uniform flow

can be found in [30] and [14]. The averaged sub-

stantial derivatives D/Dt
s

and D/Dt
v

are de-

fined as

D

Dt

s

=
∂

∂t
+ ua

s ∂

∂x
, (25)

D

Dt

v

=
∂

∂t
+ ua

v ∂

∂x
. (26)

5.2 Modeling of added-mass force

When a strong shock wave interacts with a de-

formable particle, the inviscid instead kernelKiu

will not only depend on Mp, but also on the

shape of the deformable particle. Since the de-

tailed depedance of the kernel is not known for

shapes other than spheres and cylinders, here

we pursue a simpler integrated approach. In this

appoach, Eq. (23) is simplified to

fam =
D

Dt

v (
CMρaua

v

ρp

)
− d

dt

(
CMρa

v
up

ρp

)
,

(27)

where the evaluation of the history integral is al-

together avoided. Here CM is the effective added-

mass coefficient, which in the present problem

can be taken to depend on both the instanta-

neous particle Mach number (Eq. (21) and the

shape of the particle. Note that CM = 0.5 for

a spherical particle in incompressible flow. As

shown in [26], the effective added-mass coeffi-

cient increases with Mp. Furthermore, as seen in

the DNS simulation results, Figs. 5 and 6, the

spherical particle can be seen to compress and

take an oblate spheroid shape. The added-mass

coefficient of oblate objects is larger than that of

a sphere. As a result, the effective added-mass

coefficient substantially increases during shock-

particle interaction and therefore it cannot be

taken to be a constant.

Replacing the history integral Eq. (23) by

Eq. (27) is a significant (but unavoidable) ap-

proximation. The kernel Kiu has been estab-

lished to exponentially decay on acoustic time

scale. If the time rate of change of relative mo-

mentum D
Dt

v (
ρaua

v
/ρp
)
− d

dt

(
ρa
v
up/ρp

)
were

to be slow on the acoustic time scale, then Eq.

(27) will be a good approximation to Eq. (23).

However, unfortunately, in the context of shock-

particle interaction, the time rate of change of

relative momentum occurs on the acoustic time

scale and thus Eq. (27) is only an approxima-

tion. Even though the detailed time evolution of

the added-mass force on the acoustic time scale

cannot be reproduced with the approximation

Eq. (27), with an appropriate device of CM we

will recover the overall effect of the inviscid un-

steady force.

To account for the effect of particle defor-

mation and compressibility on added-mass coef-

ficient, the effective added-mass coefficient,CM ,

can be written as:

CM (t) = CM,0ξ(t)η(Mp) , (28)

where CM,0 is the initial added-mass coefficient
of the particle, and ξ and η are the correction

functions that take into account the effects of

particle deformation and compressibility of the

ambient medium. It has been shown in Fig. 6,

the particle deformation mainly occurs as the

shock wave passes through. After that, the change

of particle shape becomes small and has less in-

fluence on the added-mass force. Therefore, a

simple expression for ξ is proposed as

ξ(t) = 1 +

(
CM,F

CM,0
− 1

)
(1− e−t/τs) , (29)
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where CM,F is the final added-mass coefficient

of the particle. As the shape of the particle is ini-

tially spherical, CM,0 = 0.5. The value of CM,F

depends on the final shape, which in turn de-

pends on the particle material and the shock

strength. Therefore, CM,F may vary from case

to case and can be considered as an input to

the model. It is shown in Fig. 5 that the final

shape of the aluminum particle is similar to an

oblate spheroid. The added-mass coefficient for

a spheroid is a function of the ratio between

equatorial radius req and conjugate radius rco
[23]. In the limit of rco/req = 0, CM = 1. It has

also been observed that a spherical particle can

deform and end up with a torus shape [22]. For a

torus, CM is about 1 [21]. In general, CM,F = 1

is a reasonable approximation if the final shape

of the particle is not known a priori.

In addition, when the shock wave passes over

the particle, Mp is finite and contribute to fur-

ther increase in the value of CM . It is shown

in [26] that, for a spherical particle, CM for

Mp = 0.6 is about twice of that for Mp = 0. The

expression of η are given by Parmar et al.[26]

η(Mp) = 1 + 1.8(Mp)2 + 7.6(Mp)4 . (30)

When particle Mach number approaches zero

and particle is rigid, ξ and η both reduce to

unity and we recover CM = CM,0 = 0.5. When

particle deformation is negligible but Mp is fi-

nite, Eq. (28) reduces to the numerical correla-

tion of effective finite-Mach-number added-mass

coefficient for a sphere [26]. Note that Parmar et

al.[26] only considered the particle Mach num-

ber up to the critical Mach number, therefore,

Eq. (30) is valid for Mp ≤ Mp
cr. It has been ver-

ified that this condition is satisfied for all cases

considered here.

5.3 Modeling of energy transfer

Similarly to the force analysis, the overall heat-

ing exerted on a particle can be expressed as the

sum of different contributions

q = qqs + quu + qdu , (31)

where qqs, quu, and qdu denote the quasi-steady,

undisturbed-unsteady, and diffusive-unsteady heat-

ing contributions, respectively.

The quasi-steady heating contribution qqs is

the thermal analog of quasi-steady force, which

is the heat transfered from the ambient medium

to the particle due to non-zero relative temper-

ature (T a − T p). This can be the expressed as

qqs =
T a

s − T p
τpθ

Nu(Rep,Pra,Mp)

2
, (32)

where Nu is the Nusselt number, which is a func-

tion of the particle Reynolds and Mach numbers

as well as the Prandtl number of the ambient

medium. An empirical correlation of Nu in com-

pressible flows is given in [8].

The undisturbed-unsteady heating contribu-

tion, quu, accounts for the energy transfer due

to the unsteadiness of the undisturbed ambient

flow field, which includes heat conduction and

work done by the surface stresses on the vol-

ume of ambient medium replaced by the parti-

cle [15]. In the present problem of SIDP, since

the particle deforms during the interaction with

the shock wave, additional challenges arise in

modeling of quu. The details of the model for

quu will be presented in the following section.

The diffusive-unsteady heating contribution,

qdu, is the thermal analog of viscous-unsteady

force, which accounts for the unsteady thermal

diffusion due to the temporal development of

the thermal boundary layer around the parti-

cle and depends on the past history of relative

thermal acceleration. The expression of qdu is

qdu =
1

2ρaτpθ

∫ t

−∞
Kdu(t− χ,Rep,Pra,Mp)(

D

Dt

s

(ρaT a)
s − d

dt
(ρaT p)

s

)
dχ , (33)



20 Ling et al.

Fig. 11 Schematic representation for evolutions of pres-
sure, density, and temperature according to the present

model.

where Kdu is the diffusive-unsteady heating ker-

nel. In the limit of zero particle Reynolds and

Mach numbers, Kdu is identical to Kvu, see [20].

Extensions for finite particle Reynolds number

were presented by [7] and [2]. To our knowledge,

there is no previous work in the literature on

the kernel for compressible flows. As suggested

in [14], the kernel presented in [7] can be used

as an approximation. Nevertheless, during the

early inviscid-phase of SIDP, the contribution

of the diffusive-unsteady heating is not signifi-

cant.

5.4 Modeling of compression heating

In the inviscid phase of SIDP, the compression

work done by pressure is much larger than that

by the shear stress and the heat transfer be-
tween the particle and ambient medium. As a

result, the undisturbed-unsteady heating con-

tribution reduces to compression heating which

can be expressed as

quu = − 1

ρpCp
pp
∂upi
∂xi

v

. (34)

However, in the interaction with an intense shock

wave, the particle deforms significantly. The ve-

locity and thermal properties inside the particle

are non-uniform and vary in time in a complex

manner. Therefore, Eq. (34) is still too compli-

cated for calculating the evolution of the mean

particle temperature. Hence, additional model-

ing is required.

Instead of computing the compression work,

we can take advantage of the knowledge we ob-

tained from the DNS results to model the evo-

lution of average particle temperature directly.

In Fig. 10(b), it can be seen that the tempera-

ture on the Hugoniot curve corresponding to pp2,

denoted as T pH(pp2), can be used as approxima-

tion for the final average particle temperature in

the inviscid phase. Here, pp2 is the pressure be-

hind the transmitted-shock in the 1D analog of

shock-particle interaction, see Fig. 9, which can

be fully determined by shock strength and the

material properties of the particle and ambient

medium. For Cases 1 and 2 considered in the

present study, we have computed pp2 = 4.14 and

20.9 GPa, respectively. Tracer 1 is located at

the leading point of the spherical particle. When

the incident shock reaches tracer 1, the spherical

geometry has little effect on its response to the

shock wave. As a result, the post-transmitted-

shock pressure of tracer 1 is observed to be very

close to pp2. Nevertheless, tracer 1 also experi-

ences the effect of multiple expansions and com-

pressions that do not follow the 1D model of Fig.

9.

Therefore, we propose to model the evolu-

tion of thermodynamic properties in the inviscid

phase as follows. The inviscid-phase of SIDP is

considered to consist of two stages in the model.

The first stage is the compression stage, which is

used to model the process when the transmitted

shock is passing through the particle. The trans-

mitted shock curvature is ignored and the trans-

mitted shock is assumed to pass through with

a constant speed that is approximated by the

incident shock speed. The mass average parti-

cle pressure ppinv, density ρpinv, and temperature

T pinv increases from (pa1 , ρp1, T a1 ) to (pp2, ρpH(pp2),

T pH(pp2)) in τs, see Fig. 11.
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The second stage is the expansion stage, which

actually models the subsequent expansion and

compression processes inside the particle after

the shock passage. We consider the particle to

reach the asymptotic final state at the end of the

expansion stage. From Fig. 8, it can be seen that

the expansion stage for Case 1 ends at about

4τs. When shock strength or material property

change, the normalized time duration of the ex-

pansion stage will vary. As shown in Fig. 8(b),

the detailed evolution of the expansion state is

non-monotonic. However, these oscillations in

the particle pressure occur on the scale of τs
and thus are of secondary importance if the time

scale of interest is much larger than τs. In the

present model, ppinv and ρpinv are taken decrease

monotonically from (pp2, ρpH(pp2)) to (pa2 , ρpH(pa2)).

From the DNS results, Figs. 8(b) and 10(b), the

expansion stage is nearly isothermal. Therefore,
T pinv remains close to T pH(pp2). The asymptotic

final states in the inviscid-phase of SIDP repre-

sented by the present model are also indicated

in Figs. 8 and 10. In Figs. 8(b) and 10(b), it can

be seen that the asymptotic final temperature

given by the model is lower than that computed

by DNS. This discrepancy is related to the ap-

proximation in the present model, i.e., the de-

tails of the subsequent expansion and compres-

sion processes inside the particle after the shock

passage and their effects on the particle temper-

ature evolution are ignored. Though the sub-

sequent expansion and compression waves in-

side the particle decay fast, their overall influ-

ences on the particle temperature are not small.

Therefore, the present model captures only the

leading order effect of shock compression heat-

ing on the particle. Due to the spherical geome-

try, the expansion and compression processes in-

side the particle are quite complex, see Fig. 6. To

improve the capability of the model on captur-

ing the final temperature in the inviscid-phase

of SIDP, a more sophisticated model that takes

into account these wave interactions is needed.

In summary, the evolutions for mass average

particle thermal properties in the inviscid-phase

of SIDP can be expressed as

ppinv =


φpp2 + (1− φ)pa1 , 0 < t̃ < 1

ψpa2 + (1− ψ)pp2, 1 < t̃ < α

pa2 , t̃ > α ,

(35)

1

ρpinv
=


φ

ρpH(pp2)
+

1− φ
ρp1

, 0 < t̃ < 1

ψ

ρpH(pa2)
+

1− ψ
ρp2

, 1 < t̃ < α

ρpH(pa2), t̃ > α ,

(36)

T pinv =

{
φT pH(pp2) + (1− φ)T a1 , 0 < t̃ < 1

T pH(pp2), t̃ > 1 ,
(37)

where t̃ = t/τs. The expressions for weight func-

tions φ and ψ are given as

φ(t̃) = 3t̃2 − 2t̃3 , (38)

ψ(t̃) = 3

(
t̃− 1

α− 1

)2

− 2

(
t̃− 1

α− 1

)3

. (39)

The weight functions φ and ψ increase smoothly

from 0 to 1 when t̃ increases from 0 to 1 and

from 1 to α, respectively. The form of the weight

function is chosen here following the work by

Parmar et al.[27]. The time duration of inviscid-

phase of SIDP normalized by τs is indicated by

α, which changes with the shock strength and

the material properties of the particle and am-

bient medium. For simplicity, α is taken to be 2

for the results shown in section 6.

In the above model, the post-incident-shock

pressure in the ambient medium, pa2 , and the

post-transmitted-shock pressure when a shock

wave interacts with a 1D particle, pp2, are in-

puts of the model. With the Rankine-Hugoniot

relation, T a2 and ρa2 can be computed from pa2 ,

and T pH(pp2) and ρpH(pp2) can be computed from

pp2.

6 Point-particle results and validation

The models presented in section 5 is used to

compute the mass average particle velocity and
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temperature for the same cases that were stud-

ied by DNS in section 4 (see Table 2). The re-

sults computed using the point-particle mod-

els are compared to those achieved by DNS for

validation. Since the particle and the ambient

medium are considered as inviscid in DNS, only

the inviscid forces (Eqs. (22) and (27)) and the

compression heating contribution (Eqs. (35)–(37))

in the models are active. To highlight the impor-

tance of the inviscid unsteady force and com-

pression heating, the results computed by the

standard drag [5] and heat-transfer correlations

[42] are also shown. We also apply the models

to compute a case of particle interaction with

a CJ detonation wave and the results will be

compare against those obtained using DNS by

Ripley [33].

6.1 Particle interaction with a non-reacting

shock wave

The temporal evolution of the mass average ve-

locity and temperature of an aluminum parti-

cle subjected to a nitromethane shock wave for

Cases 1 and 2 are shown in Figs. 12 and 13, re-

sepetively. From Fig. 12, it can be seen that up

rises rapidly when the transmitted shock passes

through the particle. The mass average particle

velocity reaches its maximum value at around

t = τs. This rapid increase of up when the shock

passes through is reasonably captured by the

present model. Up to the time plotted here, the

maximum values of up computed by the present

model are about 50% and 58% of ua2 for Cases

1 and 2, respectively; while those computed by

DNS are about 58% and 65% of ua2 , respectively.

Comparing Cases 1 and 2, the maximum up in-

creases with shock strength. This trend is cap-

tured by the model as well. If the standard drag

law is used, it can be seen that the rapid ac-

celeration of the particle during the passage of

the shock wave is completely missed. This high-

lights the critical importance of the inviscid un-

steady force in the point-particle calculation of

the particle motion in SIDP problems.

For t > τs, up continues to increase more

gradually until reaching an intermediate asymp-

totic value. As we consider both the particle and

ambient medium to be inviscid in the DNS, up

will reach an asymptotic value that is different

from the ambient medium. Particle deformation

contributes to the increase in the added-mass

force exerted on the particle. If particle defor-

mation is ignored in computing the added-mass

force, i.e., CM = 0.5, the particle velocity in-

crease will be underestimated as shown in Fig.

12(b). With increasing shock strength, the par-

ticle deforms more severely and the contribu-

tion of particle deformation on increasing the

particle velocity is more profound for Case 2

than Case 1. For Case 1, due to the relatively

low shock strength and small particle deforma-

tion, the results of CM = 0.5 are very simi-

lar to those of the present model. Furthermore,

when the shock is stronger, it takes longer time

for the particle to settle to its final shape. The

present model recovers the overall trend of up af-

ter the shock passage quite well, but in general,

the present model underestimate up by about

10-15%. The discrepancy is partially related to

the details of particle deformation that are ne-

glected in the calculation of the particle force.

For Case 2, the DNS results by Ripley [33] is

also shown here, which agrees with the present

DNS and model results reasonably well.

Similarly, the mass average particle temper-

ature increases rapidly when the shock wave

passes by, see Fig. 13. It is seen that T p − T a1
can reach about 12% and 17% of T a2 − T a1 for

Cases 1 and 2, respectively. The evolution of T p

obtained through DNS is in general more com-

plex. The approach to the asymptotic state for

T p exhibits oscillations. These oscillations are

due to the repeated reflection of the compression

and expansion waves inside the particle. Due to

the lateral expansion described in section 4, T p

reaches a local maxima before t = τs. Neverthe-
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Fig. 12 Time evolutions of average particle velocity for

(a) Case 1 and (b) Case 2.

less, the present model captures the rapid tem-

perature rise which is missed by the standard

heat-transfer correlation.

In the DNS results, T p continues to increase

after the shock passage until an asymptotic state

is reached. It can be observed in Fig. 13(a) that,

T p for case 1 reaches its final value at about

t/τ
s
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Fig. 13 Time evolutions of average particle tempera-

ture for (a) Case 1 and (b) Case 2.

t = 2.5τs. When the shock strength increases,

the compression heating effect becomes stronger

and T p increases accordingly. Similar to the par-

ticle velocity evolution, the particle temperature

takes longer time to reach the asymptotic state

for case 2 than case 1. Since the model ignores

the contributions of the subsequent expansion
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and compression processes after the shock pas-

sage, it does not recover the oscillations in the

evolution of T p and also the slow increase in

T p after the shock passage. Due to this sim-

plification, the model underestimates the final

asymptotic average particle temperature com-

pared to the DNS results. In order to obtain a

better estimate on the temperature evolution,

a more sophisticated model that takes into ac-

count the subsequent wave reflection and refrac-

tions at the particle interface is needed, which

is relegated to future work.

6.2 Particle interaction with CJ detonation

We also apply the models to the problem of par-

ticle interaction with a detonation wave for the

case considered by Ripley [33]. As discussed in

[33], when the particle diameter is much smaller

or larger than the reaction zone, the structure

of the reaction zone behind the detonation wave

has little influence on interaction with a parti-

cle. When particle is much larger than the re-

action zone, the reaction zone combined with

the shock wave can be viewed as a discontinu-

ity, i.e., as a CJ detonation wave [3, 12]. Ripley

[33] has carried out a direct numerical simula-

tion for the problem of a spherical aluminum

particle interacting with a CJ detonation wave

in nitromethane. Here, we study the same prob-

lem using the present point-particle models. In

[33], the particle and the ambient medium are

assumed to be inviscid, therefore, the inviscid

forces and the compression heating are used to

compute the mass average particle velocity and

temperature.

Following the work of Ripley [33], the det-

onation wave propagation distance is taken to

be much larger than the particle diameter. As a

result, the effect the expansion wave behind the

detonation wave (the so-called Taylor wave [39])

on the particle is ignored. Then the properties

of the gaseous products behind the CJ detona-

tion wave can be considered as constant. The

usi uaCJ paCJ ρaCJ T aCJ
[m/s] [m/s] [GPa] [Kg/m3] [K]

6690 1756 13.3 1530 3591

Table 3 CJ conditions for the case of particle interac-
tion with a CJ detonation wave [33].

CJ conditions for the problem studied here can

be found in [33], which are listed in Table 3 as

well.

The evolutions of average particle velocity

and temperature for an aluminum particle in-

teracting with a CJ detonation in nitromethane

are shown in Fig. 14. The subscript “CJ” is

used to denote post-CJ-detonation quantities.

It can be seen that the evolutions of up and T p

for detonation-particle interaction is quite sim-

ilar to the non-reacting shock cases. Both up

and T p increase rapidly when the detonation

wave passes the particle. The model captures

the rapid rises in up and T p pretty well. For

the evolution of up during the interval 0 < t <

τs, the agreement between the model and the

DNS results is excellent. It can be also observed

that, when the standard quasi-steady drag law

[5] (which ignores the inviscid unsteady force) is

used, the rapid particle acceleration is missed.

After the passage of the detonation wave, up

continues to grow due to particle deformation as

discussed before. By including the detailed his-

tory of particle deformation in the model, the

continual increase of up could be better cap-

tured. The deviation between the model and

DNS results increases with time. Nevertheless,

the deviation in up is less than 15% for t <

3τs. Beyond the simplifications involved in the

model, the numerical approximation and errors

in DNS may also contribute to the discrepancy.

Since chemical energy of nitromethane is re-

leased in the detonation wave, the post-detonation

temperature of nitromethane detonation prod-

ucts is much larger than that behind a non-

reacting shock. As a result, (T aCJ − T a1 ) is much
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larger than (T a2 −T a1 ) in the non-reacting shock

cases. As in the DNS, we consider the aluminum

particle to remain inert, so the particle tempera-

ture increases only due to detonation-compression

heating. Therefore, (T p − T p1 )/(T aCJ − T a1 ) here

in the detonation case is an order of magni-

tude smaller than the non-reacting shock cases.

The overall trend of the mass average parti-

cle temperature computed by the present model

matches the DNS results reasonably well. The

rapid thermal acceleration of the particle is missed

by the standard heat-transfer law [42]. Again,

due to subsequent compression and expansion

waves that repeatedly get reflected within the

particle after the passage of the detonation wave,

the particle temperature approaches the asymp-

totic value in an oscillatory manner. This effect

is not recovered by the present simple model,

as the effects of the subsequent wave interac-

tions are not taken into account. Nevertheless,

the model predicts the final value of T p. In a

macro-scale simulation, the oscillations in par-

ticle thermal evolution occur over acoustic time

scale and thus are in general of secondary im-

portance. If these oscillations in particle thermal

evolutions are of concern, then a more sophisti-

cated model needs to be developed to take into

account the subsequent compression and expan-

sion waves within the particle.

7 Conclusions

In this paper, we investigate the problem of shock

interaction with a deformable particle (SIDP)

through scaling analysis and direct numerical

simulations. Based on previous work on shock

interaction with a rigid particle [14], we pro-

posed point-particle models for the momentum

and thermal evolution of the deformable parti-

cle in the context of SIDP. A qualitative anal-

ysis of SIDP identifies the shock impedance ra-

tio and the shock speed ratio as the two key

parameters that control the nature of particle

deformation and the shock defraction pattern
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Fig. 14 Time evolutions of average particle velocity and
temperature for an aluminum particle interacting with

a nitromethane CJ-detonation.

around the particle. Simple estimates for the

shock impedance ratio and shock speed ratio

are obtained for the limit of a very strong shock.

When both the spherical particle and the am-

bient medium are condensed matter, the gener-

ated shock refraction pattern is expected to be

different from that in a gas-gas system. Time
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scale analysis shows that the overall interaction

process can be split into inviscid and viscous

phases according to the dominant mechanism.

In the inviscid phase, particle velocity primar-

ily evolves due to the inviscid unsteady interac-

tion with the primary shock wave and the subse-

quent internally reflected wave interactions. The

corresponding thermal evolution of the particle

during the inviscid phase is controlled by com-

pression heating. The code ALE3D is used to

conduct direct numerical simulations of the in-

viscid phase of the interaction for the particular

case of a spherical aluminum particle subjected

to an intense shock wave in nitromethane un-

der non-reacting condition. Two different shock

strengths are considered and it is found that

the particle can gain significant velocity and

temperature through the initial inviscid inter-

action with the shock wave. The particle is ob-

served to deform substantially and the effect of

particle deformation must be accounted in the

models of interphase coupling. A simple physics-

based model is proposed to capture the essential

physics of interphase coupling in SIDP based on

the previous work of Ling et al.[14]. The present

model takes into account the effect of particle

deformation on the added-mass force and the

effect of unsteady compression on heating the

particle. The model prediction is compared to

the DNS results, and reasonable agreement is

observed. In particular, the present models of-

fer significant improvements over the standard

force and heat transfer models [5, 42], through

the inclusion of the unsteady mechanisms and

deformation effects.
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